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Let Σ be a compact connected oriented surface of genus g with one boundary
component. A homology cylinder over Σ is a compact oriented 3-manifold M with
an orientation-preserving homeomorphism m : ∂ (Σ× [−1, 1])→ ∂M such that
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Homology cylinders over Σ can be regarded as cobordisms (with corners) between
two copies of Σ, namely from m (Σ× {+1}) to m (Σ× {−1}). Thus homology
cylinders can be “composed” in the usual way so that, if we consider them up to
homeomorphisms (that preserve orientations and boundary parametrizations), we
get a monoid IC(Σ). For instance, IC(Σ) is in genus g = 0 isomorphic to the
monoid of homology 3-spheres. In genus g > 0, the mapping cylinder construction

c : I(Σ) −→ IC(Σ), s 7−→
(
Σ× [−1, 1], (Id×{−1}) ∪ (∂Σ× Id) ∪ (s× {1})

)
defines an embedding of the Torelli group of the surface Σ into the monoid IC(Σ).

Two homology cylinders M and M ′ over Σ are said to be Yk-equivalent if M ′

can be obtained from M by “twisting” an arbitrary embedded surface E in the
interior of M with an element of the k-th term ΓkI(E) of the lower central series
of the Torelli group I(E) of E. (The surface E has an arbitrary position in M , but
it is assumed to be compact connected oriented with one boundary component.)
The Jk-equivalence relation on IC(Σ) is defined in a similar way using the k-th
term of the Johnson filtration of I(E) instead of its lower central series: in other
words, the “twisting” homeomorphism is required to act trivially at the level of
the k-th nilpotent quotient π1(E)/Γk+1π1(E) of the fundamental group π1(E).
All these equivalence relations are organized as follows:

Y1 ⇐= Y2 ⇐= Y3 ⇐= · · · Yk ⇐= Yk+1 ⇐= · · ·
‖ ⇓ ⇓ ⇓ ⇓
J1 ⇐= J2 ⇐= J3 ⇐= · · · Jk ⇐= Jk+1 ⇐= · · ·

The Yk-equivalence relations have been introduced by Goussarov and Habiro in
the context of finite-type invariants [1, 4]. They have developed a surgery calculus
in dimension three, which is kind of a topological analogue of the commutator
calculus in groups and is called “clasper calculus” [2, 4]. The Yk-equivalence
relations can be reformulated and studied using this clasper calculus. Having this
strong tool at one’s disposal is a big advantage of the Yk-equivalence relations with
respect to the Jk-equivalence relations.
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The Y1-equivalence relation is trivial on IC(Σ) [4, 3], whereas the Y2-equivalence
is a non-trivial relation whose classification is known [4, 8]. This talk reported on
a work in progress [9], where we give a characterization of the Y3-equivalence in
terms of three classical invariants. The first invariant is the action of M ∈ IC(Σ)
on the third nilpotent quotient of π1(Σ):

ρ3(M) ∈ Aut
(
π1(Σ)/Γ4π1(Σ)

)
.

The second invariant is, in some sense, the quadratic part of the Alexander poly-
nomial of M ∈ IC(Σ) relative to its bottom boundary m(Σ × {−1}), which we
interpret as a degree 2 symmetric tensor over H1(Σ;Z):

α(M) ∈ S2
(
H1(Σ;Z)

)
.

To define the third and last invariant, we need to choose an embedding j : Σ ↪→ S3

such that j(Σ) union with a disk splits S3 into two handlebodies of genus g. Then,
the Casson invariant of the homology 3-sphere obtained by “inserting” M into S3

in a neighborhood of j(S3) is denoted by

λj(M) ∈ Z.

Theorem A. Two homology cylinders M and M ′ are Y3-equivalent if, and
only if, we have ρ3(M) = ρ3(M ′), α(M) = α(M ′) and λj(M) = λj(M

′).

In genus g = 0, Theorem A asserts that two homology 3-spheres are Y3-equivalent
if and only if they have the same Casson invariant, which is due to Habiro [4]. The
theorem is proved by means of the LMO homomorphism introduced in [5], which
is a generalization of the LMO invariant of homology 3-spheres [7]. We show that
the degree ≤ 2 part of the LMO homomorphism classifies the Y3-equivalence and
we analyse how ρ3, α and λj are encoded in this universal invariant.

In contrast with the J1-equivalence, the J2-equivalence is not trivial but classi-
fied by the action on the second nilpotent quotient of π1(Σ). This can be deduced
from the characterization of the Y2-equivalence given in [8] with a little bit of
clasper calculus. Similarly, the following can be deduced from Theorem A and the
existence, proved by Morita [10], of a homology 3-sphere whose Casson invariant
is equal to ±1 and which is J3-equivalent to S3.

Theorem B. Two homology cylinders M and M ′ are J3-equivalent if, and
only if, we have ρ3(M) = ρ3(M ′) and α(M) = α(M ′).

In genus g = 0, Theorem B asserts that any homology 3-sphere is J3-equivalent to
S3. This fact was expected by Morita [10] and has been proved by Pitsch [12].

Although the invariant λj is easy to compute by surgery techniques, it is not
completely satisfactory in that it depends on j. This phenomenon already appears
at the level of the Torelli group, i.e. for the composition λj◦c : I(Σ)→ Z which has
been studied by Morita [10, 11]. More precisely, he has shown that its restriction
to the Johnson subgroup K(Σ), i.e. to the second term of the Johnson filtration,
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is a group homomorphism which decomposes as

(1) −λj ◦ c|K(Σ) = qj +
1

24
d.

Here the homomorphism qj : K(Σ)→ Q is explicitly determined by the action on
π1(Σ)/Γ4π1(Σ) in a way which involves j, while the homomorphism d : K(Σ)→ Z
does not depend on j. The J3-equivalence relation being trivial for homology 3-
spheres [12], formula (1) shows that all the information on homology 3-spheres
carried by the Casson invariant is contained in this map d: thus Morita calls it
the core of the Casson invariant. Let KC(Σ) be the submonoid of IC(Σ) that acts
trivially on π1(Σ)/Γ3π1(Σ).

Theorem C. There exists a unique extension of d to
a monoid homomorphism d : KC(Σ) → Z which is in-
variant by Y3-equivalence, by the mapping class group
action and by stabilization of the surface Σ.

K(Σ)
d //

c

��

Z

KC(Σ)

∃!d

<<z
z

z
z

z

The unicity of the extension of d is justified by comparing the decomposition of
Γ2I(Σ)
Γ3I(Σ) ⊗Q into irreducible Sp(2g;Q)-modules [6] to that of Y2IC(Σ)

Y3
⊗Q [5], where

Y2IC(Σ) denotes the submonoid of homology cylinders M that are Y2-equivalent
to Σ× [−1, 1]. The existence can be proved by means of the LMO homomorphism.
The extension of d to the monoid KC(Σ) takes the form

d = −24 (λj + qj) + (something derived from α using j).

This generalizes Morita’s formula (1) since α is trivial on K(Σ).
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